índice boletín 19

1. METODOLOGÍA	_
2. ESTRUCTURA ENERGÉTICA NACIONAL	
3. ESTRUCTURA ENERGÉTICA EN ARAGÓN	
3.1. ENERGÍA PRIMARIA	800
3.1.1. ENERGÍAS RENOVABLES	
3.1.1.1. ENERGÍA SOLAR	
3.1.1.2. BIOCARBURANTES	
3.1.1.3. OBTENCIÓN DE HIDRÓGENO	
3.2. POTENCIA ELÉCTRICA INSTALADA	#
3.3. PRODUCCIÓN DE ENERGÍA ELÉCTRICA	
3.3.1. CENTRALES TÉRMICAS CONVENCIONALES	
3.3.2 CENTRALES DE CICLO COMBINADO	(Ĉ
3.3.3. CENTRALES DE COGENERACIÓN	
3.3.4. CENTRALES HIDROELÉCTRICAS	
3.3.5. CENTRALES EÓLICAS	A
3.3.6. CENTRALES SOLAR FOTOVOLTAICA	
3.3.7. RESUMEN DE ENERGÍA ELÉCTRICA GENERADA	
3.3.8. INDICADORES DE PRODUCCIÓN DE ENERGÍA ELÉCTRICA	
3.4. ENERGÍA FINAL	
3.4.1. CONSUMO DE ENERGÍA ELÉCTRICA	
3.4.2. CONSUMO DE GAS NATURAL	
3.4.3. CONSUMO DE GLP	
3.4.4. CONSUMO DE HIDROCARBUROS LÍQUIDOS	
3.4.5. CONSUMO DE ENERGÍAS RENOVABLES	~
3.4.5.1. CONSUMO DE BIOMASA. USOS FINALES	
3.4.5.2. CONSUMO DE BIOCARBURANTES	
3.4.5.3. OTROS CONSUMOS DE BIOMASA	
3.4.5.4. ENERGÍA SOLAR TÉRMICA	
3.4.6. RESUMEN DE CONSUMOS FINALES	
3.5. ANÁLISIS DE LA ESTRUCTURA ENERGÉTICA	
4. EMISIONES ASOCIADAS A LOS CONSUMOS ENERGÉTICOS EN ARAGÓN	
4.1. EMISIONES DE CO ₂ ASOCIADAS A CONSUMO DE ENERGÍA FINAL	
4.2. EMISIONES DE CO ₂ ASOCIADAS A TRANSFORMACIÓN DE ENERGÍA ELÉCTRICA	
4.3. EMISIONES DE CO ₂ ASOCIADAS A CONSUMO DE ENERGÍA PRIMARIA	
5. EL HIDRÓGENO EN LA EXPO 2008	
6. CONVENIOS PARA PROMOVER E IMPULSAR EL AHORRO Y LA EFICIENCIA ENERGÉTICA Y LAS ENERGÍAS RENOVABLES	
7. PROYECTOS EJEMPLARIZANTES	

índice

1.- Metodología

Instalación solar de 180 Kw con seguidor a 1 eje 10 kW. Calamocha (Teruel).

La A.I.E. (Agencia Internacional de la Energía) expresa sus balances de energía en una unidad común que es la tonelada equivalente de petróleo (tep), que se define como 10⁷ kcal. La conversión de unidades habituales a tep se hace en base a los poderes caloríficos inferiores de cada uno de los combustibles considerados y se concretan en los siguientes valores:

Metod	ología

CARBÓN:	(tep/tm)	PRODUCTOS PETROLÍFEROS	(tep/tm)
Generación eléctrica:		Petróleo crudo	1,019
Hulla+Antrac	cita 0,4970	Gas natural licuado	1,080
Lignito negro	0,3188	Gas de refinería	1,150
Lignito pardo	0,1762	Fuel de refinería	0,960
Hulla import	ada 0,5810	G.L.P.	1,130
Coquerías:		Gasolinas	1,070
Hulla	0,6915	Queroseno aviación	1,065
Otros usos:		Queroseno corriente y agrícola	1,045
Hulla	0,6095	Gasóleos	1,035
Coque metal	úrgico 0,7050	Fueloil	0,960
		Naftas	1,075
		Coque de petróleo	0,740
		Otros productos	0,960

Carbón:

Comprende los distintos tipos de carbón (hulla, antracita, lignito negro y lignito pardo), así como productos derivados. En el consumo final de carbón se incluye el consumo final de gas de horno alto y de gas de coquería. El consumo primario de carbón recoge, además del consumo final, los consumos en el sector transformador y las pérdidas.

Petróleo:

Comprende:

- Petróleo crudo, productos intermedios y condensados de gas natural.
- Productos petrolíferos incluidos los gases licuados del petróleo (GLP) y gas de refinería.

El consumo final, en el sector transporte, comprende todo el suministro a aviación, incluyendo a compañías extranjeras, no así los combustibles de barcos (bunkers) para transporte internacional.

Biomasa:

Comprende los distintos tipos de materiales, de origen natural, utilizados para la obtención de energía. Como ejemplo sirva derivados de la madera, residuos agrícolas, cultivos energéticos, etc. De esta consideración quedan excluidos los biocarburantes.

en Aragón

Biocarburantes:

Biodiésel

Los esteres metílicos de los ácidos grasos (FAME) denominados biodiésel, son productos de origen vegetal o animal, cuya composición y propiedades están definidas en la norma EN 14214, con excepción del índice de yodo, cuyo valor máximo está establecido en 140. (Norma EN ISO 3675).

PCI = 8.750 kcal/kg. Densidad (a 15°C) = 0,875 gr/cm³

En España, regulado por el RD 61/2006 de 31 de enero.

El Biodiésel se obtiene a partir del procesamiento de aceites vegetales tanto usados y reciclados como aceites obtenidos de semillas oleaginosas de **cultivos energéticos** como girasol, colza, soja... El Biodiésel mezclado con diésel normal genera unas mezclas que se pueden utilizar en todos los motores diésel sin ninguna modificación de los motores, obteniendo rendimientos muy similares con una menor contaminación.

1 tonelada de biodiésel = 0,9 tep.

Bioetanol

El bioetanol es un alcohol producido a partir de la fermentación de los azúcares que se encuentran en la remolacha, maíz, cebada, trigo, caña de azúcar, sorgo u otros cultivos energéticos, que mezclado con la gasolina produce un biocombustible de alto poder energético con características muy simiares a la gasolina pero con una importante reducción de las emisiones contaminantes en los motores tradicionales de combustión.

1 tonelada de bioetanol = 0,645 tep.

Gas:

En consumo final incluye el gas natural y gas manufacturado procedente de cualquier fuente. En consumo primario incluye únicamente gas natural, consumido directamente o manufacturado.

1 tep = 0.09 Gcal. P.C.S.

Energía Hidráulica:

Recoge la producción bruta de energía hidroélectrica primaria, es decir, sin contabilizar la energía eléctrica procedente de las centrales de bombeo. Su conversión a tep se hace basándose en la energía contenida en la electricidad generada, es decir, 1 MWh = 0.086 tep.

Energía Solar:

Recoge la producción bruta de energía solar primaria. En el caso de energía solar fotovoltaica la producción bruta de energía medida directamente en los colectores y en el caso de energía solar térmica el cálculo de la energía se basa en la superficie instalada.

Energía Eólica:

Recoge la producción bruta de energía eólica primaria, medida en el generador de corriente del eje de alta velocidad, situado en la góndola del aerogenerador.

Energía Nuclear:

Recoge la producción bruta de energía eléctrica de origen nuclear considerando un rendimiento medio de una central nuclear de 33%, por lo que 1MWh = 0.026 tep.

Electricidad:

Su transformación a tep tanto en el caso de consumo final directo como en el de comercio exterior, se hace con la equivalencia 1MWh = 0.086 tep.

El consumo de energía primaria se calcula suponiendo que las centrales eléctricas mantienen el rendimiento medio del año anterior.

Cálculo de Emisiones:

Para el cálculo de las emisiones de CO₂, principal gas de efecto invernadero (GEI), se ha seguido la metodología planteada por el Panel Intergubernamental de Expertos sobre Cambio Climático (IPCC) que plantea un factor de emisión en términos de intensidad de emisión en toneladas de CO₂ por kilotep (tCO₂/ktep) para cada fuente de energía.

Factores d	Factores de Emisión			
Líquidos	Petróleo crudo	3.040		
Marie C	Gasolina	2.872		
	Queroseno de aviad	ción2.964		
	Gasóleo	3.070		
	Fuelóleo	3.207		
	GLP	2.614		
	Coque de petróleo	4.179		
	Otros derivados	2.766		
Sólidos	Antracita	4.032		
	Coque de carbón	3.881		
	Lignito	4.152		
Gaseosos	Gas Natural	2.337		

Además, se distinguen las emisiones asociadas a transformación, las asociadas a consumos finales y las asociadas al consumo de energía primaria. También, en las emisiones asociadas a la generación eléctrica, se tiene en cuenta el mix de generación y la participación y cantidad de las diferentes energías primarias.

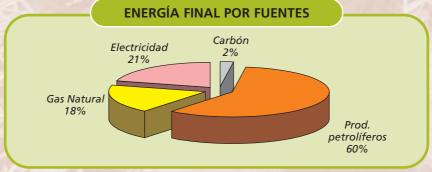
Para la confección de las tablas y gráficas que se presentan en este Boletín se ha contado con la colaboración de numerosos organismos, administraciones, empresas y centenares de usuarios. Con objeto de identificar las distintas fuentes, a continuación se relacionan todas ellas antecedidas con un número que se utilizará para reseñar la fuente de los datos presentados en las diferentes tablas y gráficas.

- 1. Diputación General de Aragón
- 2. Ministerio de Industria, Turismo y Comercio
- 3. Red Eléctrica Española, S.A.
- 4. Enagas, S.A.
- 5. Grupo Endesa
- 6. Iberdrola, S.A.
- 7. Grupo Viesgo
- 8. Grupo Gas Natural
- 9. Electra del Maestrazgo, S.A.
- 10. Repsol Butano, S.A.

- 11. Cepsa Elf Gas, S.A.
- 12. BP Oil España, S.A.
- 13. Shell España
- 14. Primagaz Distribución, S.A.
- 15. Totalgaz, S.A.
- 16. Comisión Nacional de Energía
- 17. CLH Aviación, S.A.
- 18. Grupo Meroil
- 19. Ágreda Automóvil
- 20. Castelnou Energía, S.L.

2.- Estructura Energética Nacional

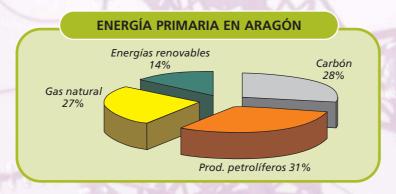
Energía Primaria en España


Ktep	NACIONAL	IMPORTADO	TOTAL
CARBÓN	3.049	6.859	9.908
PROD. PETROLÍFEROS	61	35.153	35.214
GAS NATURAL	8	15.367	15.375
HIDROELÉCTRICA	1.485	0	1.485
NUCLEAR	7.092	0	7.092
RESTO	1.990	-117	1.990
TOTAL	13.685	57.262	71.064

Hidroeléctrica Nuclear Resto Carbón 14% Gas Natural 22% Prod. petrolíferos 49%

Energía Final en España

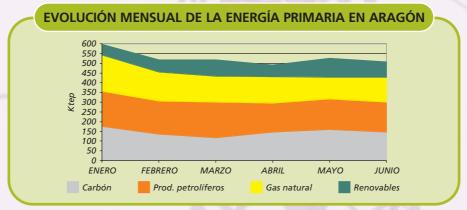
Ktep	NACIONAL
CARBÓN	1.148
PROD. PETROLÍFEROS	30.946
GAS NATURAL	9.750
ELECTRICIDAD	10.927
RENOVABLES	*
TOTAL	52.771


NOTA: Para el año 2007 no se dispone de datos nacionales de consumo final de biomasa.

Fuentes: 2, 3 Elaboración: Propia

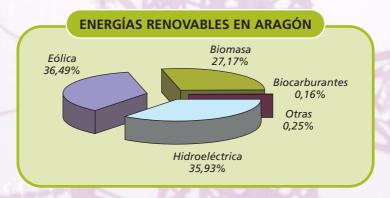
3.- Estructura Energética en Aragón

3.1.- Energía Primaria


	CARBÓN	PROD.	GAS	ENERGÍAS	
Ktep	PROPIO IMPO	OR. PETROLÍFEROS	NATURAL	RENOVABLES	TOTAL
HUESCA	0 8	223	95	134	460
TERUEL	494 373	3 137	226	36	1.266
ZARAGOZA	0 1	635	522	266	1.425
ARAGÓN	494 382	995	843	436	3.151

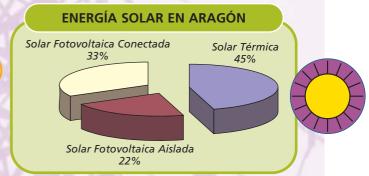
Ktep	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	TOTAL
CARBÓN	175	137	117	145	158	145	876
PROD. PETROLÍFEROS	180	169	183	149	158	156	995
GAS NATURAL	188	149	133	137	111	126	843
RENOVABLES	54	62	83	60	96	80	436
ARAGÓN	597	517	516	491	524	506	3.151

NOTA: En el caso de energías renovables no se dispone, por diversos motivos, de los datos desagregados mensualmente de la energía solar térmica, solar fotovoltaica aislada y geotérmica. Por ello, el dato global correspondiente al semestre se ha supuesto distribuido por igual para los seis meses.



NOTA: Los datos de consumo primario de carbón incluyen también el coque de carbón importado. Los datos de consumo primario de productos petrolíferos incluyen también el coque de petróleo, el petróleo crudo y otros derivados.

Fuentes: 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15


3.1.1.- Energías Renovables

			RENO	VABLES		
Тер	HIDROELÉCTRICA	EÓLICA	BIOMASA	BIOCARBURANTES	OTRAS	TOTAL
HUESCA	103.583	23.262	6.868	0	336	134.049
TERUEL	1.911	7.705	26.165	0	259	36.041
ZARAGOZA	51.234	128.183	85.483	700	509	266.108
ARAGÓN	156.728	159.150	118.516	700	1.104	436.199

3.1.1.1.- Energía solar

		AND PORT AND A	The state of the s
	SOLAR	SOLAR	
Тер	TÉRMICA	FOTOV. AISLADA	CONECTADA
Aragon	229	108	166

3.1.1.2.- Biocarburantes

Тер	PRODUCIDO	IMPORTADO	CONSUMIDO
Biodiesel		700	700
Bioetanol		-	-
Total	_	700	700

3.1.1.3.- Obtención de hidrógeno

Kg	PRODUCCIÓN
Aragón	10

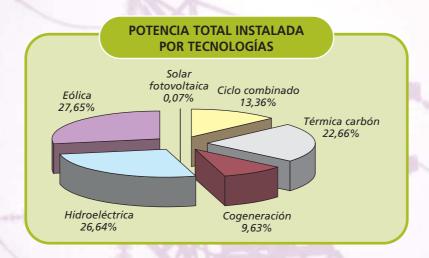
Fuente: 1 Elaboración: Propia

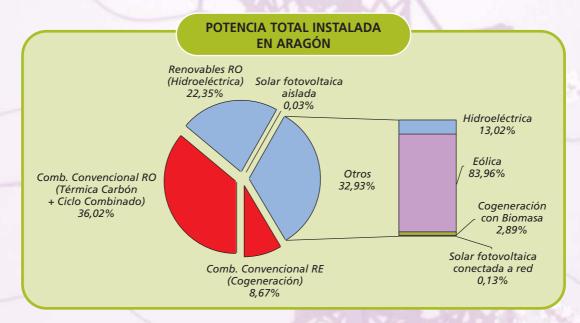
3.2.- Potencia Eléctrica Instalada

TERMOELÉCTRICA CONVENCIONAL	PROVINCIA	N° CENTRALES	POTENCIA (MW)
	Huesca	0	0
	Teruel	2	1.261
	Zaragoza	1	80
	Total	3	1.341

COGENERACIÓN	PROVINCIA	N° CENTRALES	POTENCIA (MW)
	Huesca	19	171
	Teruel	8	68
	Zaragoza	24	330
	Total	51	569,81

CICLO COMBINADO	PROVINCIA	N° CENTRALES	POTENCIA (MW)
	Huesca	0	0
	Teruel	1	791
	Zaragoza	0	0
	Total	1	791


				RÉGIMEN ES	SPECIAL (RE)	<mark>RÉGIMEN</mark> OR	DINARIO (RO)
HIDROELÉCTRICA	PROVINCIA	N° CENTRALES	POTENCIA (MW)	N° CENT.	POT. (MW)	N° CENT.	POT. (MW)
	Huesca	67	1.145	35	175	32	970
	Teruel	10	30	7	9	3	21
	Zaragoza	21	402	13	70	8	332
	Total	98	1.577	55	254	43	1.323


EÓLICA	PROVINCIA	N° CENTRALES	POTENCIA (MW)
	Huesca	7	266
	Teruel	4	127
	Zaragoza	51	1.244
	Total	62	1.637

SOLAR		CONECTA	DA A RED	AISLADA	
FOTOVOLTAICA	PROVINCIA	POTENCIA kW	N° CENT.	POTENCIA	POTENCIA
	Huesca	1.187	28	851	336
	Teruel	818	26	465	353
	Zaragoza	2.191	50	1.200	991
	Total	4.196	104	2.516	1.680

	N° CENTRALES (sin SF aislada)	POTENCIA (MW)
TOTAL POTENCIA INSTALADA (en funcionamiento)	318	5.920

Fuente: 1 Elaboración: Propia

Instalación solar de 100 kW con seguidor a 2 ejes 5 kW. Fuentes Claras (Teruel).

Fuente: 1 Elaboración: Propia

3.3.- Producción de Energía Eléctrica

3.3.1.- Centrales Térmicas Convencionales

Energía eléctrica generada

MWh	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	TOTAL
HUESCA	0	0	0	0	0	0	0
TERUEL	744.718	579.101	501.415	606.654	669.166	621.420	3.722.474
ZARAGOZA	0	0	0	0	0	0	0
TOTAL ARAGÓN	744.718	579.101	501.415	606.654	669.166	621.420	3.722.474

Consumos por centrales

CENTRAL	Escucha	Teruel	
MWh producidos	298.058	3.424.416	
Tep carbón nacional	41.510	452.106	
Tep carbón importación	44.253	327.954	
Tep otros consumibles	250	4.302	
Total Tep consumidos	86.014	784.362	
Ratio MWh / Tep	3,47	4,37	

3.3.2.- Centrales de Ciclo Combinado

Energía eléctrica generada

MWh	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	TOTAL
HUESCA	0	0	0	0	0	0	0
TERUEL	366.015	172.159	83.816	162.007	45.559	209.556	1.039.112
ZARAGOZA	0	0	0	0	0	0	0
TOTAL ARAGÓN	366.015	172.159	83.816	162.007	45.559	209.556	1.039.112

Consumos por centrales

CENTRAL	Castelnou
MWh producidos	1.039.112
Tep gas natural	187.823
Tep otros combustibles	0
Total Tep consumidos	187.823
Ratio MWh / Tep	5,53

Fuentes: 1, 5, 7 Elaboración: Propia

3.3.3.- Centrales de Cogeneración

Energía eléctrica generada

MWh	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	TOTAL
HUESCA	43.156	52.218	59.175	50.114	56.653	61.042	322.358
TERUEL	30.771	27.887	23.121	17.979	19.913	6.001	125.672
ZARAGOZA	215.838	196.018	213.893	202.381	207.365	195.181	1.230.676
ARAGÓN	289.766	276.123	296.189	270.474	283.930	262.224	1.678.705

Instalación solar 1,5 MW (en ampliación a 4,5 MW) con seguidores de 25 kW. Sádaba (Zaragoza).

Elaboración: Propia Fuentes: 1, 5

1.800

42.930

36.682

.413

4.415 15.405

4.782

861

.540

1.486.177

8.329 8.329

114.551

844

74.983

10.563 340

\$ \$

13.149

644

989

31.681 28.269 99.023

35.374 32.459

58 492

502

.544 3.564

en Aragón

Leyenda:

Análisis energéticos. Centrales de cogeneración

3353 3.353

.862

99.662

3.953

274.769

9.457

436

EE autoconsumida

EE vendida

O": (Q-V/0,9)_{vendida}

RES

Q": (Q-V/0,9) auto consumida

13.927

Datos pertenecientes al primer semestre del año 2007

121.864 4.067 64.731 2.856

40.864

3.973

1.388

988

₩.

25.442 1.054 28.513

902

1.651 766

0.086

88

CS: Ciclo simple CC: Ciclo combinado CR: Ciclo Rankine M: Motor GN: Gas Natura GO: Fuel Oil GO: Gas Oil BI: Biomasa RES: Resíduos

Q': Consumo de combustible correspondiente

E: Energía Eléctrica Generada Consumo de Combustible

a la generación térmica **Q":** Consumo de combustible correspondiente a la

generación de energía eléctrica para autoconsumo Q": Consumo de combustible correspondiente

E. Eléctrica autoconsumida

731,521 GWh

CENTRALES DE COGENERACIÓN

Calor útil recuperado (V)

2145,487 GWh

è

Tecnología

CNAE

MWh

a la generación de energía eléctrica vendida $\mathbf{Q} = \mathbf{Q}' + \mathbf{Q}'' + \mathbf{Q}'''$

Generación de Energía Eléctria (E) Total

9

4.304

. 995

629

Calor Útil Recuperado (V) 요

RES Consumo de Energía Primaria (Q) (MW)

15, 16 26.5 40, 50 - 99

Construcción de automóviles y bicicletas

Comercio, Servicios y otros

ementos, Cales y Yesos

Vimentación, bebidas y tabaco

Agricultura y Ganadería

nd. del caucho, materias plásticas y otros Extracción y aglomeración de carbones ndustria Textil, Cuero y Calzado ndustria de Madera y Corcho

Mag. y Transformación Metalúrgica

Vlinas y canteras (no energéticas) Otros materiales construcción Química y Petroquímica Pasta de Papel y Cartón siderurgia y fundición

CC.CR.M CS,CC,M

varicultura y Ganadería MWh

Q' = V/0,9

쯌

construcción de automóviles y bicicletas Ilmentación, bebidas y tabaco comercio, Servicios y otros Cementos, Cales y Yesos

Extracción y adlomeración de carbones ndustria de Madera y Corcho

ndustria Textil, Cuero y Calzado

4.493 821 Ind. del caucho, materias plásticas y otros vlaq. y Transformación Metalúrgica Minas y canteras (no energéticas) Otros materiales construcción Química y Petroquímica Pasta de Papel y Cartón siderurgia y fundición

E. Eléctrica vendida

Residuos

(RES) Biomasa (BI)

Fuelóleo

Gasóleo (GO)

Gas Natural

ĝ

945,732 GWh

9.457 GWI

29.715 GWI

4.360,082 GWh

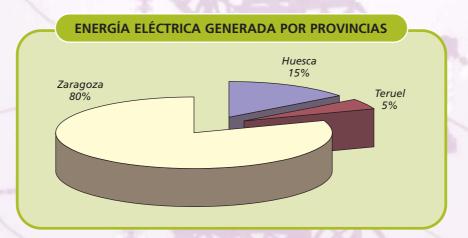
3.3.4.- Centrales Hidroeléctricas

Energía eléctrica generada en centrales de Régimen Especial

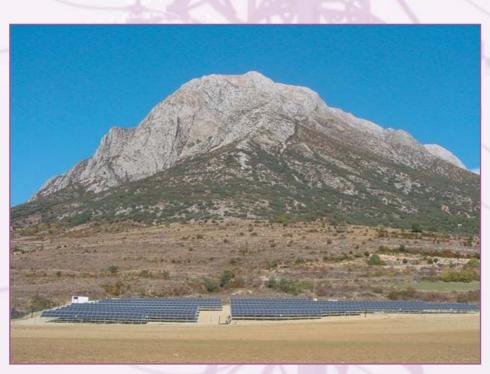
MWh	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	TOTAL
HUESCA	30.319	34.393	36.307	60.790	74.766	64.892	301.466
TERUEL	200	165	973	1.705	3.947	1.940	8.930
ZARAGOZA	14.480	25.727	27.566	20.110	22.841	19.254	129.979
ARAGÓN	44.999	60.285	64.846	82.605	101.553	86.086	440.375

Energía eléctrica generada en centrales de Régimen Ordinario

MWh	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	TOTAL
HUESCA	70.374	94.719	94.281	118.198	242.042	283.373	902.989
TERUEL	2.325	2.028	2.634	2.071	2.102	2.132	13.292
ZARAGOZA	14.512	28.519	67.972	123.609	140.459	90.693	465.763
ARAGÓN	87.211	125.266	164.887	243.878	384.603	376.199	1.382.045



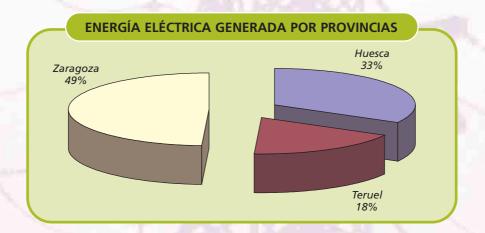
Fuentes: 1, 5, 6 Elaboración: Propia


3.3.5.- Centrales Eólicas

Energía eléctrica generada

MWh	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	TOTAL
HUESCA	37.310	38.075	66.522	20.502	67.422	40.658	270.490
TERUEL	10.417	21.435	23.751	7.384	13.135	13.477	89.598
ZARAGOZA	223.573	250.641	407.657	120.399	311.892	176.335	1.490.497
ARAGÓN	271.300	310.151	497.930	148.286	392.449	230.470	1.850.586

Instalación solar 200 kW. Piniello (Huesca).

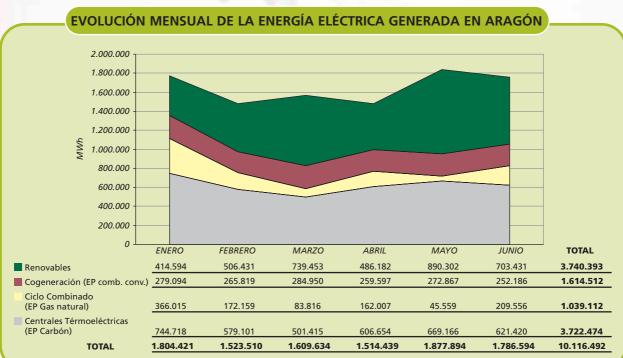

Elaboración: Propia Fuentes: 1, 5

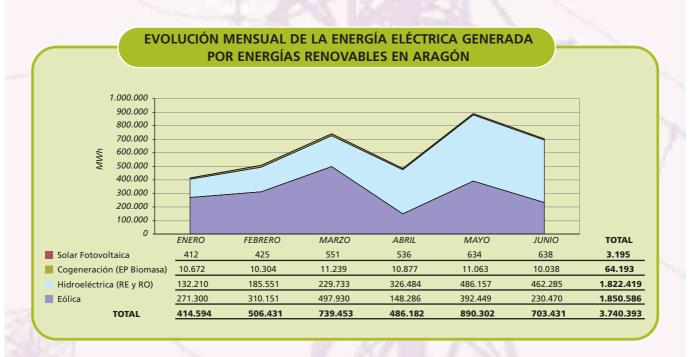
3.3.6.- Centrales solar fotovoltaica

Energía eléctrica generada

MWh	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	TOTAL
HUESCA	61,6	67,5	111,4	111,7	141,9	145,2	639,4
TERUEL	37,6	39,1	66,0	54,6	74,8	70,8	342,9
ZARAGOZA	103,0	108,3	163,3	159,4	206,8	211,9	952,6
ARAGÓN	202,1	214,9	340,7	325,7	423,5	427,9	1934,9

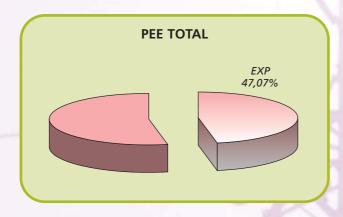
NOTA: No incluye la energía solar fotovoltaica aislada.

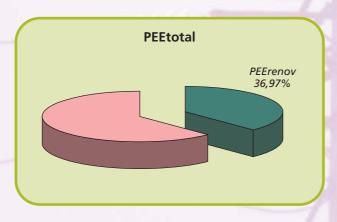



Instalación solar. Azaila (Teruel).

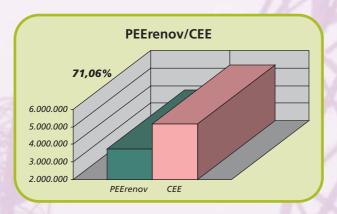
Fuentes: 1, 5 Elaboración: Propia

3.3.7.- Resumen de Energía Eléctrica Generada




3.3.8.- Indicadores de producción de energía eléctrica

Porcentaje de Exportación de Energía Eléctrica frente a la Producción Total de Energía Eléctrica (EXP / PEE TOTAL)

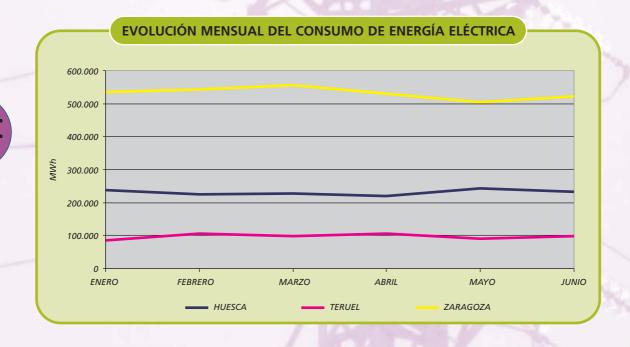

(MWh	ARAGÓN	
	EXPORTACIÓN (EXP)	4.762.153	1
	PRODUCCIÓN ENERGÍA ELÉCTRICA TOTAL (PEE TOTAL)	10.116.492	
	EXP/PEEtotal	47,07%	

Porcentaje de Producción de Energía Eléctrica a partir de Energías Renovables frente a la Producción Total de Energía Eléctrica (PEE renov / PEE TOTAL)

MWh	ARAGÓN
PRODUCCIÓN ENERGÍA ELÉCTRICA DE ORIGEN RENOVABLE (PEE renov)	3.740.393
PRODUCCIÓN ENERGÍA ELÉCTRICA TOTAL (PEE TOTAL)	10.116.492
PEErenov/PEEtotal	36,97%

Porcentaje de Producción de Energía Eléctrica a partir de Energías Renovables frente al Consumo Final de Energía Eléctrica (PEE renov / CEE)

(MWh	ARAGÓN)
	PRODUCCIÓN ENERGÍA ELÉCTRICA DE ORIGEN RENOVABLE (PEE renov)	3.740.393	
	CONSUMO DE ENERGÍA ELÉCTRICA (CEE)	5.263.748	
	PEErenov/CEE	71,06%	

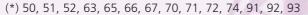

3.4.- Energía Final

3.4.1.- Consumo de Energía Eléctrica

Consumo de energía eléctrica por meses y provincias

MWh	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	TOTAL
HUESCA	239.482	227.330	229.793	221.708	246.963	235.859	1.401.135
TERUEL	85.203	107.002	95.342	103.448	87.753	93.587	572.336
ZARAGOZA	553.192	557.448	573.438	546.531	521.161	538.508	3.290.278
ARAGÓN	877.876	891.780	898.574	871.687	855.877	867.955	5.263.748

Se incluye el autoconsumo de electricidad en las centrales de cogeneración.

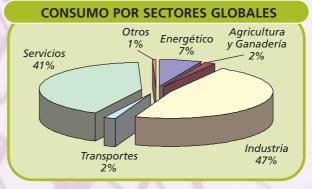


Instalación solar térmica en el Centro Atades. Zaragoza.

Fuentes: 1, 5, 6, 9 Elaboración: Propia

Consumo de energía eléctrica por sectores y provincias

MWh	CNAE	HUESCA	TERUEL	ZARAGOZA	ARAGÓN
Agricultura y Ganadería	01, 02, 05	22.446	7.179	52.751	82.376
Extracción de Carbón	10	0	14.871	275	15.145
Extracción de Petróleos	11	15	-	35	49
Combustibles Nucleares	12, 23.3	12	-	31	43
Refinerías de Petróleo	23.2	17	-	10.981	10.998
Coquerías	23.1	-	10	-	10
Producción/Distribución Electricidad	40.1	246.647	18.605	49.471	314.722
Sector de Gas	40.2	790	34	933	1.757
Minería y Canteras	13, 14	805	3.928	8.170	12.903
Siderurgia y Fundición	27.1, 27.2, 27.3, 27.5	182.937	99.344	64.626	346.906
Metalurgia no férrea	27.4	12.964	14.692	36.313	63.970
Vidrio	26.1	-	1.228	39.053	40.281
Cementos, Cales y Yesos	26.5	172	3.268	72.833	76.272
Otros materiales construcción	26 (exc .1 y .5)	8.169	15.874	40.301	64.344
Química y Petroquímica	24	300.362	11.287	101.367	413.016
Maq. y Transformación Metalúrgica	28 - 32	13.569	4.865	143.210	161.644
Construcción Naval	35.1	-	-	44	44
Construcción de automóviles y bicicletas	34, 35.4	781	6	104.333	105.121
Construcción otros medios transp.	35.2, 35.3, 35.5	13	-	413	427
Alimentación	15, 16	60.484	33.342	96.067	189.893
Industria Textil, Cuero y Calzado	17, 18, 19	37.827	1.306	12.211	51.344
Industria de Madera y Corcho	20	1.747	53.582	10.390	65.719
Pasta de Papel y Cartón	21	879	2.534	46.569	49.982
Gráficas	22	346	120	9.765	10.230
Caucho y Plásticos y otras	<mark>25, 33, 36, 37</mark>	22.447	2.615	111.499	136.562
Construcción	45	7.454	1.515	12.410	21.379
Ferrocarrril	60.1	10.763	1.712	62.586	75.061
Otras empresas de transporte	60 (exc .1), 61, 62	5.418	1.659	13.818	20.895
Hostelería	55	31.475	18.899	106.994	157.367
Comercio y Servicios	(*)	107.647	38.861	404.815	551.323
Administración Servicio Público	41, 64, 73, 75, 80, 85, 90, 99	39.648	24.689	200.025	264.362
Alumbrado Público		20.414	13.791	42.074	76.278
Uso Doméstico		187.653	146.410	786.035	1.120.097
No clasificados		4.921	5.151	20.181	30.253
Autoconsumo Cogeneración		72.315	30.957	629.700	732.973
TOTAL		1.401.135	572.336	3.290.278	5.263.748

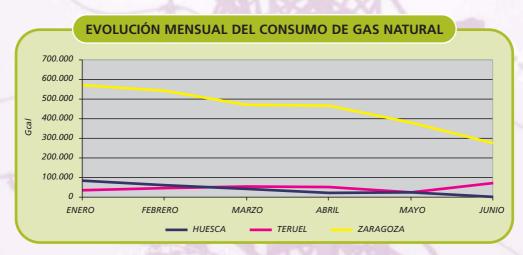


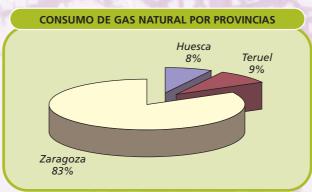
NOTA: El agregado "Autoconsumo Cogeneración" incluye, según la nomenclatura del Real Decreto 436/2004, en su Anexo II, el apartado "b". El agregado "Producción / Distribución Electricidad" incluye los consumos en bombeo.

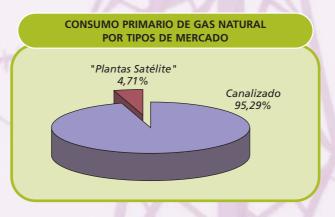
Consumo por sectores globales

ENERGÉTICO	342.725
AGRICULTURA Y GANADERÍA	82.376
INDUSTRIA	2.543.010
TRANSPORTES	95.956
SERVICIOS	2.169.429
OTROS	30.253
TOTAL	5.263.748

Fuentes: 1, 5, 6, 9



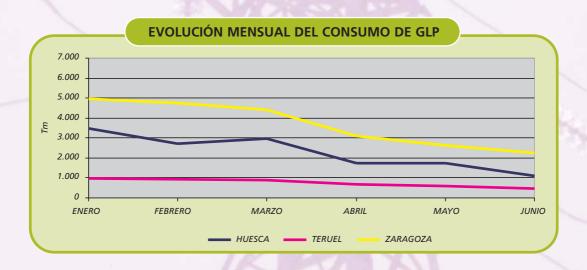

3.4.2.- Consumo de Gas Natural

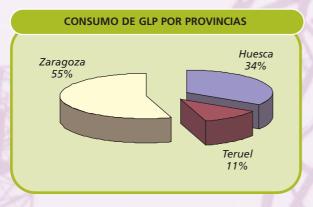

Consumo de gas natural por meses y provincias

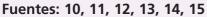
Gcal	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	TOTAL
HUESCA	85.894	63.944	45.094	24.859	26.743	3.391	249.925
TERUEL	37.244	48.189	57.216	54.422	27.590	73.859	298.519
ZARAGOZA	571.624	542.291	471.088	466.755	381.313	277.134	2.710.205
ARAGÓN	694.761	654.424	573.398	546.035	435.647	354.384	3.258.649

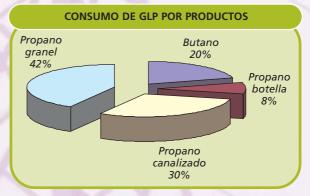
Se ha descontado el consumo destinado a generación de energía eléctrica, tanto en termoeléctricas como en cogeneración, y en el ciclo combinado.

Fuentes: 1, 5 Elaboración: Propia

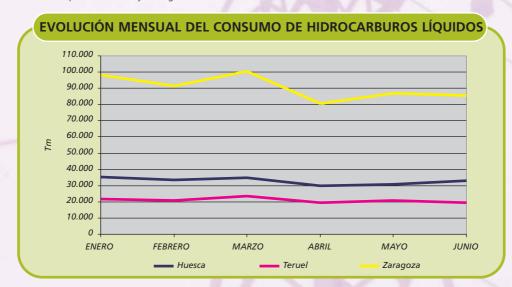

3.4.3.- Consumo de GLP


Consumo de GLP por meses y provincias


Tm	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	TOTAL
HUESCA	3.490	2.699	2.977	1.738	1.735	1.112	13.751
TERUEL	975	949	883	659	576	455	4.496
ZARAGOZA	4.957	4.735	4.414	3.109	2.621	2.259	22.094
ARAGÓN	9.422	8.382	8.273	5.506	4.931	3.826	40.340


Consumo de GLP por productos

Tm	BUTANO		PROPANO			
	Botella	Botella 11 Kg	Botella 35 Kg	Canalizado	Granel	TOTAL
HUESCA	2.131	614	369	5.570	5.068	13.751
TERUEL	1.671	286	180	604	1.754	4.496
ZARAGOZA	4.409	1.482	359	5.871	9.974	22.094
ARAGÓN	8.211	2.382	908	12.044	16.796	40.340

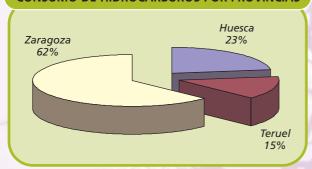

Elaboración: Propia

3.4.4.- Consumo de Hidrocarburos Líquidos

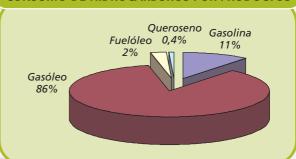
Evolución mensual del consumo de hidrocarburos líquidos

	Tm	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	TOTAL
⋖	HUESCA	3.267	3.248	3.862	4.091	3.640	3.968	22.076
GASOLINA	TERUEL	1.442	1.393	1.703	1.861	1.775	1.718	9.892
\SO	ZARAGOZA	9.541	9.181	10.893	10.857	10.726	11.088	62.287
ď	ARAGÓN	14.250	13.822	16.458	16.809	16.141	16.774	94.255
	HUESCA	31.583	29.659	30.565	25.114	26.315	27.975	171.210
EO	TERUEL	19.819	19.122	21.121	16.643	18.368	17.058	112.131
GASÓLEO	ZARAGOZA	85.466	78.856	86.075	66.263	72.103	70.678	459.442
ď	ARAGÓN	136.867	127.638	137.761	108.020	116.786	115.711	742.783
	HUESCA	363	404	344	481	842	791	3.225
LEC	TERUEL	364	417	729	807	831	551	3.700
FUELÓLEO	ZARAGOZA	2.060	2.138	2.338	2.151	2.838	2.333	13.858
E	ARAGÓN	2.788	2.960	3.411	3.440	4.511	3.674	20.783
0	HUESCA	0	0	0	0	0	0	0
SEN	TERUEL	0	0	0	0	0	0	0
RO	ZARAGOZA	1.105	1.050	1.303	1.288	1.404	1.336	7.486
QUEROSENO	ARAGÓN	1.105	1.050	1.303	1.288	1.404	1.336	7.486
	HUESCA	35.213	33.312	34.770	29.687	30.797	32.734	196.512
LES	TERUEL	21.626	20.932	23.553	19.311	20.975	19.326	125.723
TOTALES	ZARAGOZA	98.172	91.225	100.610	80.559	87.070	85.435	543.072
ĭ	ARAGÓN	155.010	145.469	158.934	129.557	138.841	137.495	865.307

Se ha descontado el consumo destinado a generación de energía eléctrica, tanto en termoeléctricas como en cogeneración. Los datos de queroseno incluyen la gasolina de aviación.



Fuentes: 2, 17 Elaboración: Propia


Consumo de hidrocarburos líquidos por productos

Tm	GASO	LINAS		GASÓLEOS		FUELÓLEO	QUEROSENO	TOTAL
PROVINCIA	95	SP 98	А	В	С	BIA		SEMESTRE
HUESCA	19.778	2.298	107.568	52.688	10.954	3.225	0	196.512
TERUEL	8.949	943	62.630	40.630	8.871	3.700	0	125.723
ZARAGOZA	57.020	5.267	323.573	75.442	60.426	13.858	7.486	543.072
ARAGÓN	85.746	8.509	493.772	168.760	80.251	20.783	7.486	865.307

CONSUMO DE HIDROCARBUROS POR PROVINCIAS

CONSUMO DE HIDROCARBUROS POR PRODUCTOS

CONSUMO DE HIDROCARBUROS POR SECTORES

Instalación solar. Gelsa (Zaragoza).

Fuentes: 2, 17 Elaboración: Propia

3.4.5.- Consumo de Energías Renovables

3.4.5.1.- Consumo de Biomasa. Usos Finales

Usos finales

Тер	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	TOTAL
HUESCA	959	959	959	959	959	959	5.755
TERUEL	3.876	4.166	4.621	3.730	4.582	4.680	25.654
ZARAGOZA	7.042	7.070	7.188	7.194	7.118	7.177	42.789
ARAGÓN	11.878	12.195	12.768	11.883	12.659	12.816	74.198

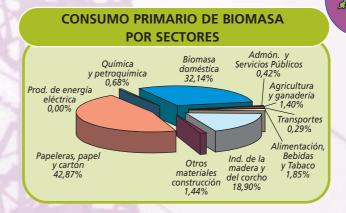
CONSUMO FINAL DE BIOMASA POR PROVINCIAS Huesca 8% 57% Teruel 35%

3.4.5.2.- Consumo de Biocarburantes

Biodiésel Usos finales

	litros	Тер
HUESCA	0	0
TERUEL	0	0
ZARAGOZA	914.445	700
ARAGÓN	914.445	700

Instalación solar de 9 MW con seguidor a 1 eje. Zuera (Zaragoza)


Fuentes: 1, 18, 19 Elaboración: Propia

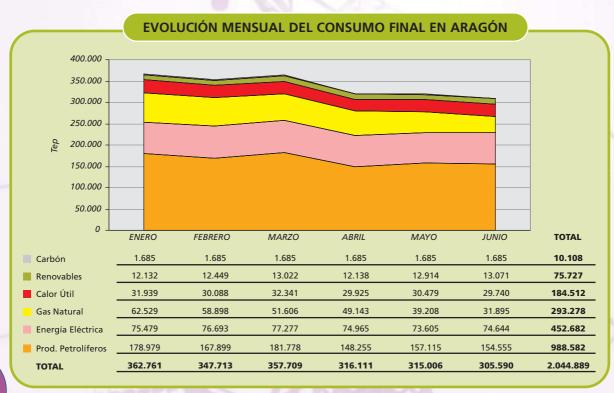
3.4.5.3.- Otros consumos de Biomasa

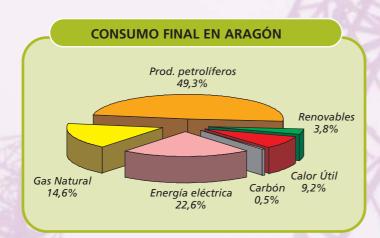
Transformación (cogeneración)

Тер	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUNIO	TOTAL
HUESCA	65	150	215	218	279	187	1.113
TERUEL	166	189	107	39	11	0	511
ZARAGOZA	7.126	6.623	7.343	7.100	7.325	7.178	42.694
ARAGÓN	7.357	6.962	7.664	7.356	7.615	7.365	44.318

CONSUMO DE BIOMASA EN TRANSFORMACIÓN POR PROVINCIAS Huesca Teruel 2,5% 1,2% Zaragoza 96,3%

3.4.5.4.- Energía Solar Térmica

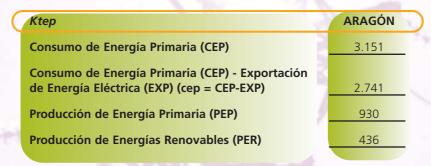

	m²	Тер
HUESCA	1.833,7	59,6
TERUEL	211,6	6,9
ZARAGOZA	5.007,3	162,7
ARAGÓN	7.053	229

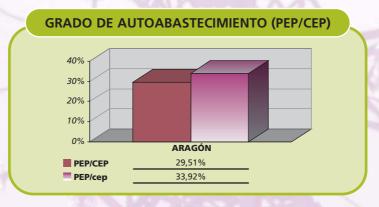

Instalación solar en cubierta 80 kW en Grupo OX-CTA. Walqa (Huesca).

Fuente: 1, 18, 19 Elaboración: Propia

3.4.6.- Resumen de Consumos Finales

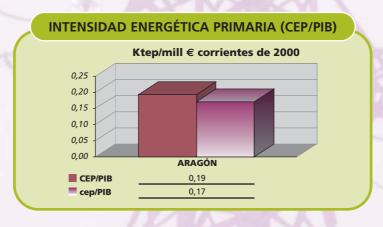
NOTA: En el caso de la biomasa se ha considerado la destinada a usos térmicos. En el apartado de Productos Petrolíferos se han incluido el coque de petróleo, el petróleo crudo y aceites usados consumidos en el sector industrial. El carbón incluye también la antracita y el coque de carbón consumido en el sector industrial. Las energías renovables incluyen consumo final de biomasa, energía solar térmica y energía geotérmica.

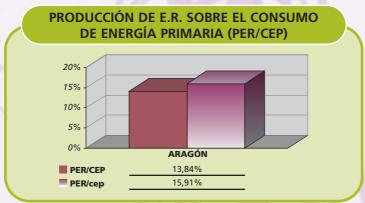




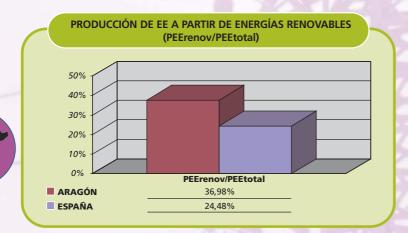
Instalación solar. Monreal del Campo (Teruel).

3.5.- Análisis de la Estructura Energética


Energía Primaria



NOTA: El grado de autoabastecimiento en Aragón está influido por la variación de stock de carbón autóctono.

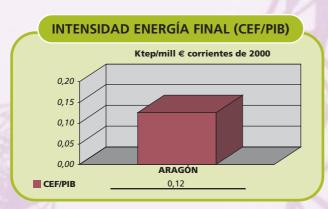


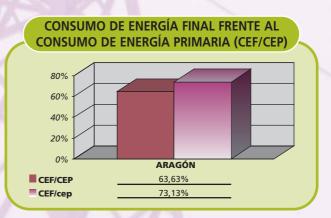
Fuentes: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

Producción de energía eléctrica

(MWh
	CENTRALES TÉRMICAS CONVENCIONALES
	CENTRALES DE CICLO COMBINADO
	CENTRALES DE COGENERACIÓN
	Cogeneración con combustible convencional
	Cogeneración con biomasa como energía primaria
	NUCLEAR
	CENTRALES HIDROELÉCTRICAS
	CENTRALES EÓLICAS
	OTRAS RENOVABLES
	PEE TOTAL

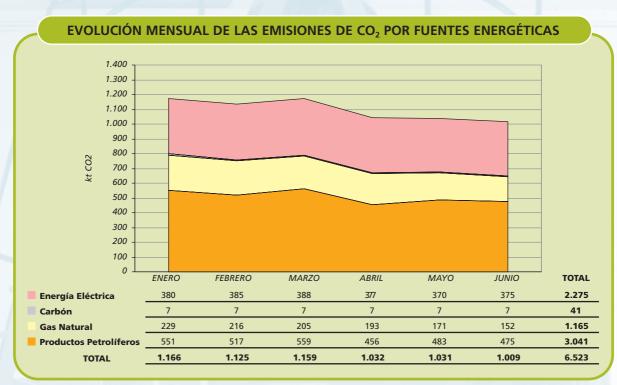
ARAGÓN	ESPAÑA	%
3.722.474	44.043.000	8,5%
1.039.112	28.880.000	3,6%
1.678.705	15.401.000	10,9%
1.614.512		
64.193		
0	27.214.000	0,0%
1.822.419	18.865.000	9,7%
1.850.586	13.926.000	13,3%
3.195	4.654.000	0,1%
10.116.492	152.983.000	6,6%





Energía final

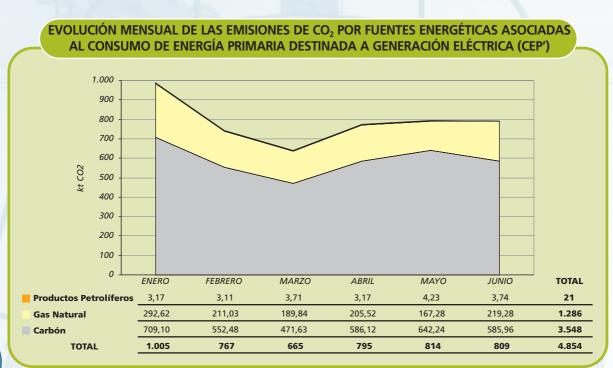
ARAGÓN Ktep	ARAGÓN	ESPAÑA	%
Consumo de Energía Final (CEF)	2.005	52.771	3,8%
Consumo de Energía Eléctrica (CEE)	453	10.927	4,1%



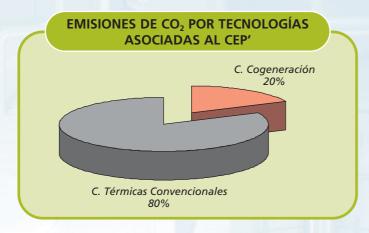
NOTA: Para el cálculo de la intensidad energética final se ha tomado un valor del PIB con precios corrientes de 2000 (millones euros). **NOTA**: En el caso de Aragón, el consumo de energía final (CEF) incluye: biomasa térmica, energía eléctrica, gas natural, calor útil, carbón y productos pertrolíferos.

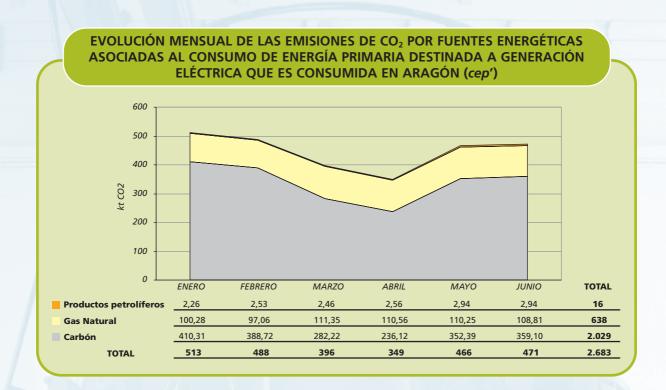
4.- Emisiones asociadas a los consumos energéticos en Aragón

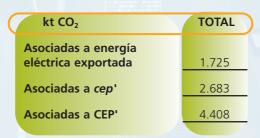
4.1.- Emisiones de CO₂ asociadas a consumo de Energía Final



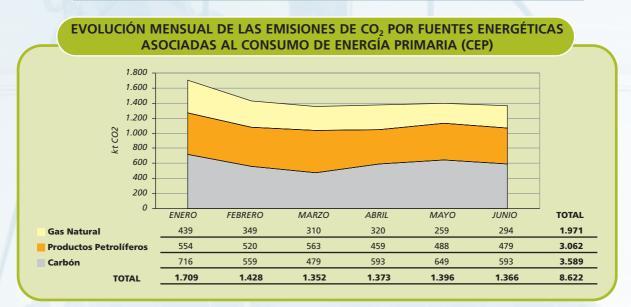
kt CO ₂	TOTAL
Huesca	1.438
Teruel	749
Zaragoza	4.336
TOTAL	6.524

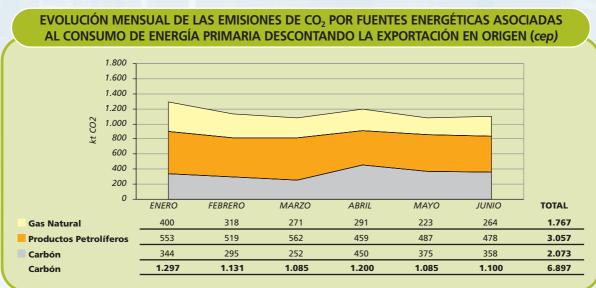

4.2.- Emisiones de CO₂ asociadas a transformación de Energía Eléctrica





kt CO ₂	TOTAL
Huesca	174
Teruel	3.619
Zaragoza	662
TOTAL	4.455





4.3.- Emisiones de CO₂ asociadas al consumo de Energía Primaria

Glosario de abreviaturas:

CEP: Consumo total de energía primaria, sin descontar la posible exportación de energía fuera de la región

cep: Consumo de energía primaria, descontando la parte correspondiente a la energía exportada (en el caso de Aragón es energía eléctrica).

cep: Consumo de energía primaria descontando la exportación en origen (se descuenta el consumo primario asociado a la exportación en tep).

CEP': Consumo de energía primaria asociado a la generación eléctrica.

CEP' – cep': Consumo de energía primaria asociado a la energía eléctrica exportada.

5.- El hidrógeno en la Expo 2008

La progresiva disminución de las reservas de combustibles fósiles y los problemas medioambientales asociados a su combustión obligan a la búsqueda de nuevas alternativas energéticas. En este contexto, el hidrógeno (H₂) surge como un nuevo "vector energético", que ofrece además importantes ventajas frente a las tecnologías tradicionales. El hidrógeno se presenta como una alternativa de futuro para un modelo de transporte más sostenible y respetuoso con el medio ambiente. Su uso reduce también la dependencia energética de terceros países, y evita el impacto que tienen los combustibles fósiles sobre el medio ambiente.

Aprovechando el oportuno entorno que constituye la celebración de la Exposición Internacional Zaragoza 2008, bajo el lema "Agua y Desarrollo Sostenible", en Aragón se ha apostado por el desarrollo e implantación de un innovador sistema de transporte urbano mediante vehículos propulsados con hidrógeno que va a ser operativo, no sólo durante la celebración de la muestra sino también una vez finalizada la misma. Este sistema constituye el primer paso para el desarrollo, en el futuro, de una pionera infraestructura de transporte sostenible que dará servicio a la ciudad y su entorno.

En este contexto, el proyecto se ha desarrollado en torno a dos ejes principales:

- La creación de una infraestructura de generación, almacenamiento y suministro de hidrógeno a vehículos, coloquialmente llamada *Hidrogenera*.
- La congregación de una flota de vehículos cuyo funcionamiento se base en la utilización del hidrógeno como combustible, generando como residuo únicamente vapor de agua.

LA HIDROGENERA

Frente a la producción generalizada de hidrógeno basada en la reforma del gas natural, y por tanto sin restringir la dependencia de combustibles fósiles, en Aragón se ha apostado por la obtención del hidrógeno mediante procesos limpios y energéticamente sostenibles. En este contexto, la *Hidrogenera* de Zaragoza, ubicada en una parcela de servicios del barrio de

Valdespartera, es capaz de generar hidrógeno en sus propias instalaciones a partir del agua de red de la ciudad, convirtiéndose en una instalación autosuficiente y no siendo necesario el transporte del combustible por carretera como ocurre con el resto de hidrocarburos convencionales.

La *Hidrogenera* basa la producción en el proceso de electrólisis del agua, generando un hidrógeno de alta calidad y pureza que permite el repostaje de vehículos dotados de pila de combustible. Además, la *Hidrogenera* obtiene la energía eléctrica necesaria para el funcionamiento de sus instalaciones mediante energías renovables (eólica y fotovoltaica principalmente). De este modo se cierra el círculo de la sostenibilidad, demostrando la viabilidad técnica de la instalación de un proyecto de estas características. Igualmente, por motivos de flexibilidad, la *Hidrogenera* cuenta también con la posibilidad de dispensar H₂ generado fuera de la instalación.

El proceso de producción de hidrógeno comienza con un desmineralizador, que es el encargado de eliminar las impurezas del agua de red. Una vez purificada, el agua pasa al electrolizador, que mediante una corriente eléctrica rompe la molécula obteniendo oxígeno e hidrógeno. El electrolizador es capaz de generar hasta 12,5 Nm³/h de hidrógeno al 99,5% de pureza a 8 bar. El proceso está diseñado como un sistema continuo por lo que la capacidad máxima de generación diaria es de aproximadamente 25 kg de hidrógeno. Posteriormente, y con objeto de mejorar su pureza, se ha dispuesto una unidad de purificación del gas, obteniéndose un producto de alta pureza (99,995%) con un contenido máximo de oxígeno de 5 ppm.

El hidrógeno producido se comprime en un proceso de dos etapas para su posterior almacenamiento. El almacenaje se realiza mediante bloques de botellas de alta presión estimando una capacidad máxima de almacenamiento superior a los 100 kg de hidrógeno a 420 bar. Posteriormente, el suministro a los vehículos se realiza mediante un surtidor especial que dispensará a dos presiones diferentes (200 bar y 350 bar) en función de la tecnología utilizada en los vehículos a alimentar.

LA FLOTA DE VEHÍCULOS DE HIDRÓGENO

La situación actual del mercado de vehículos de hidrógeno se encuentra en estado de desarrollo. Si bien existen en el mercado diferentes tipologías de vehículos, la mayor parte de éstos se presentan como prototipos o están en fase de pruebas. La flota de vehículos dispuesta para la Expo 2008 cuenta con los siguientes elementos:

- 3 Hydrogenics. Minibuses con capacidad para 22 personas y una autonomía de unos 200 kilómetros. Se trata de vehículos de reducido tamaño, menos de 6 metros de longitud, por lo que resultan muy versátiles. Está previsto que estos vehículos funcionen durante la Expo y posteriormente formarán parte de la flota de vehículos de transporte de la ciudad.
- 1 VANHOOL 100-passengers Bus. Se trata de un autobús de gran capacidad, habilitado para transportar más de 100 personas y con una autonomía de casi 400 km.
- 5 Scooter AJUSA. Unidades de vehículo monoplaza de tipología similar a una scooter.
- 20 Bicicletas EOS. Bicicletas de hidrógeno

Debido principalmente a la novedosa tecnología utilizada, el parque de vehículos de hidrógeno existente presenta unos elevadísimos precios que hacen difícil su viabilidad a corto plazo. En este contexto, si bien las tecnologías del hidrógeno son un hecho factible y tecnológicamente viable, hay que indicar que la implantación y extensión del uso de las mismas debe comenzar por apoyos decididos de las diferentes administraciones. Aragón ya ha dado el primer paso.

La implementación de este proyecto cumple con el doble objetivo de servir de plan de demostración para la consecución de un sistema de transporte no contaminante, y para impulsar a Aragón como referente nacional y europeo en las tecnologías del hidrógeno. En este sentido la Fundación para el Desarrollo de las Tecnologías del H₂ y el innovador proyecto de la *Hidrogenera* (la cuarta en España, en el mundo hay apenas 150), son dos buenas muestras de la apuesta estratégica de Aragón por el hidrógeno.

6.- Convenios para promover e impulsar el ahorro y la eficiencia energética y las energías renovables

El **Gobierno de Aragón**, con objeto de seguir manteniendo sus líneas de promoción, desarrollo y mejora de la generación y uso eficiente y sostenible de la energía, ha suscrito nuevos Convenios de colaboración con el Instituto para la Diversificación y Ahorro de la Energía (IDAE), donde se definen los medios y acciones de apoyo público contempladas en el **Plan de Energías Renovables 2005-2010** y las medidas y actuaciones para facilitar la consecución de los objetivos previstos en el **Plan de Acción 2008-2012 de la Estrategia de Ahorro y Eficiencia Energética (PEA4+).**

El primero de los convenios define y regula los mecanismos de colaboración entre el IDAE y la Comunidad Autónoma de Aragón para llevar a cabo las actuaciones encaminadas a conseguir los objetivos previstos en el **Plan de Acción 2008-2012 de la Estrategia de Ahorro y Eficiencia Energética en España (PEA4+)**. Este acuerdo contempla 22 medidas para fomentar el uso eficiente de la energía en 7 sectores (industria, transporte, edificación, equipamiento doméstico, servicios públicos, agricultura y pesca y transformación de la energía), con una dotación de **10.288.177 euros** que serán aportados por el IDAE.

El segundo de los convenios define y regula los mecanismos de colaboración entre el IDAE y la Comunidad Autónoma de Aragón para la definición y puesta en práctica de las actuaciones de apoyo público contempladas en el **Plan de Energías Renovables 2005-2010 (PER)**. En este caso la dotación económica que será aportada por el IDAE asciende a **1.544.529 euros**, que servirán para financiar ayudas públicas a inversiones en proyectos de energía en diferentes ámbitos de actuación.

PLAN DE ACCIÓN 2008-2012 DE LA ESTRATEGIA DE AHORRO Y EFICIENCIA ENERGÉTICA EN ESPAÑA (PEA4+)

La Estrategia de ahorro y Eficiencia Energética en España 2004-2012 definió los potenciales de ahorro y las medidas a llevar a cabo con el objetivo de mejorar la intensidad energética e inducir un cambio de convergencia hacia los compromisos internacionales en materia de medio ambiente. Sobre esta estrategia se concretó un Plan de Acción para el periodo 2005-2007, centrado en las medidas e instrumentos a activar en dicho periodo, la financiación del mismo y los objetivos energéticos y medioambientales a conseguir. En este contexto, el Ministerio de Industria, Turismo y Comercio ha elaborado el Plan de Acción, para el periodo 2008-2012 (PAE4+). Así, la Dirección General de Energía y Minas, del Departamento de Industria Comercio y Turismo impulsará diferentes líneas de actuación que sigan contribuyendo a conseguir los objetivos energéticos, marcados fundamentalmente en el Plan Energético de Aragón 2005-2012.

Este nuevo Plan de Acción se integra en el Plan de Acción de Eficiencia Energética en el ámbito comunitario, contribuyendo con ello a dar una respuesta, no sólo a la consecución del compromiso establecido en la Directiva 2006/32 CE, que define un marco de esfuerzo común para conseguir un ahorro energético de un 9% en el año 2016, sino también al objetivo mucho más ambicioso, incluido en la decisión del Consejo Europeo de 9 de Marzo de 2007: alcanzar niveles de ahorro del 20% en el horizonte de 2020. Así, los principios rectores de la nueva planificación se dirigen hacia lograr los siguientes objetivos estratégicos:

- 1. Reconocer en el ahorro y la eficiencia energética un instrumento del crecimiento económico y del bienestar social.
- 2. Conformar las condiciones adecuadas para que se extienda y se desarrolle el conocimiento sobre el ahorro y la eficiencia energética.
- 3. Impregnar el ahorro y la eficiencia energética en todas las estrategias energéticas.
- 4. Fomentar la competencia en el mercado bajo el principio rector del ahorro y la eficiencia energética.
- 5. Consolidar la posición, tanto aragonesa como nacional, en la vanguardia del ahorro y la eficiencia energética.

En el **sector industrial** se promocionarán acuerdos para la realización de auditorías energéticas (para detectar el potencial y facilitar la toma de decisión de inversión en ahorro de energía) y Programas de Ayudas Públicas (para facilitar la viabilidad económica de las inversiones en ahorro energético).

En el **sector de la edificación** se proponen medidas para la rehabilitación de la envolvente térmica de los edificios existentes, mejora de la eficiencia energética de las instalaciones térmicas de los edificios existentes y mejora de la eficiencia energética de las instalaciones de iluminación interior de los edificios existentes.

En el **sector transporte** se plantean acuerdos relacionados con la elaboración de Planes de Movilidad Urbana (PMU), gestión de flotas de transporte por carretera, renovación de flotas de transporte por carretera y del parque automovilístico de turismos, elaboración de planes de transporte para empresas y mejoras de la participación de los medios colectivos en el transporte por carretera.

En el **sector de servicios públicos** se proponen medidas orientadas a la renovación de las instalaciones de alumbrado público exterior existentes; estudios, análisis de viabilidad y auditorías en instalaciones de alumbrado exterior existentes, cursos de formación energética para técnicos municipales y mejora de la eficiencia energética de las instalaciones actuales de potabilización.

En el **sector de transformación de energía** se propone promover el desarrollo del potencial de cogeneración (desarrollo de estudios de viabilidad técnica, económica y administrativa de nuevas cogeneraciones y fomento de plantas de cogeneración de pequeña potencia), ayudas públicas a cogeneraciones no industriales, mejoras de eficiencia energética en cogeneración (auditorías energéticas y mejoras técnicas disponibles).

En el **sector de agricultura y pesca** se proponen campañas de promoción y formación de técnicas de uso eficiente de la energía en agricultura, impulso para la migración de sistemas de riego por aspersión a sistemas de riego localizado y realización de auditorías energéticas y planes de actuación de mejoras en comunidades de regantes.

En el **sector de equipamiento residencial y ofimático** se propone la continuación de las medidas relacionadas con el Plan Renove de Electrodomésticos. El presupuesto previsto en este Plan asciende a 1.753.000 euros considerándose como actuación susceptible de ayuda la adquisición de electrodomésticos con las siguientes prestaciones mínimas:

- Frigoríficos, frigorífico-congelador y congelador con clasificación energética A, A+ y A++.
- Lavadoras con clasificación energética A y eficacia de lavado A.
- Lavavajillas con clasificación energética A y eficacia de lavado A.
- Lavadoras y lavavajillas bitérmicas con clasificación energéticas A y eficacia de lavado A.
- Hornos de clasificación energética A.
- Encimeras de inducción y encimeras de gas.

Los beneficios directos del PAE4+, se traducen en un primer nivel en ahorros energéticos y en reducción de emisiones. En el primer caso, y dado que no encontramos ante un escenario de precios de la energía y en especial, de los productos petrolíferos, muy elevados, se estima que los ahorros se traducen en beneficios económicos muy importantes que rentabilizan por si mismos las inversiones que se lleven a cabo. Otros beneficios son los derivados de otros impactos medioambientales, la sostenibilidad, el empleo, o la competitividad.

La gestión eficaz de los recursos es una pieza clave para alcanzar los niveles propuestos de ahorro, por lo que en este segundo Plan se recogen los beneficios derivados del aprendizaje y puesta en marcha de los sistemas de colaboración entre Administraciones. A esa corresponsabilidad de ejecución del Plan, entre la Administración General del Estado y las CCAA, se suma la participación de nuevos agentes (vendedores, profesionales, auditores, empresas de servicios, instaladores, etc.) que se están acercando a este "nuevo concepto" de la eficiencia, por su rentabilidad y su capacidad de generar nuevos negocios.

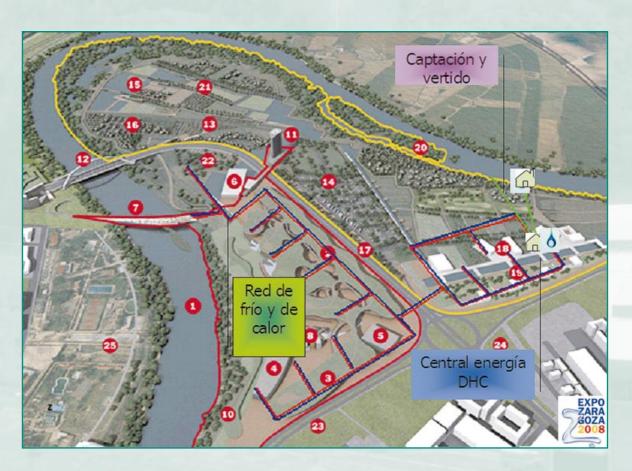
i

PLAN DE ENERGÍAS RENOVABLES EN ESPAÑA 2005-2010 (PER)

Este acuerdo, con un presupuesto de 1.544.529 euros, contempla las siguientes medidas subvencionables:

- Solar térmica de baja temperatura.
- Biomasa térmica.
- Instalaciones Híbridas de biomasa + solar térmica.
- Solar fotovoltaica aislada o mixta eólico-fotovoltaica.
- Pequeñas instalaciones para obtención y aprovechamiento de biogás.
- Equipos de tratamiento en campo de biomasa.
- Surtidores para biocarburantes.

Estos convenios se van a implementar en la Comunidad Autónoma de Aragón mediante la convocatoria de subvenciones en el presente ejercicio 2008 para el uso eficiente de la energía, las energías renovables y el Plan Renove de Electrodomésticos; y, por otro lado, la realización de jornadas y cursos de información y formación. Además el Departamento de Industria, Comercio y Turismo seguirá estableciendo las subvenciones, de acuerdo a las bases reguladoras del Decreto 216/2005, de 25 de Octubre, del Gobierno de Aragón, mediante convocatorias por órdenes anuales para promover el ahorro y diversificación energética, el uso racional de la energía, el aprovechamiento de los recursos autóctonos y las infraestructuras energéticas.


7.- Proyectos ejemplarizantes

7.1.- Exposición Internacional Zaragoza 2008 "Agua y desarrollo sostenible"

INSTALACIÓN DE TRIGENERACIÓN PARA LOS EDIFICIOS DE EXPO ZARAGOZA 2008

Con ocasión de la celebración de la Exposición Internacional Expo Zaragoza 2008 y la consecuente urbanización del meandro de Ranillas, se ha implementado de un sistema centralizado de producción y distribución de calor y frío para la calefacción y la climatización de los edificios, (también llamado "District Heating & Cooling" o DHC.).

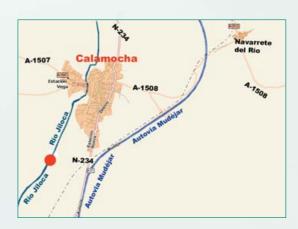
La instalación de sistema centralizado de calor y frío para la Expo Zaragoza consta de una red (tuberías de calor y frío), una central de energía, un sistema de captación del río y subestaciones térmicas, si bien no estará disponible la trigeneración hasta 2011. Este proyecto de red centralizada, cuyas características básicas se resumen en las tablas adjuntas, ha sido diseñado con criterios de alta eficiencia dado que se alcanza un rendimiento eléctrico superior al 55%, un ahorro de energía primaria de más del 10% y un rendimiento global por encima del 75%. Con cogeneración supondrá unas emisiones evitadas a la atmósfera del 38%. El sistema ha sido diseñado para ir extendiendo el servicio a otros edificios que se vayan construyendo una finalizada la Expo.

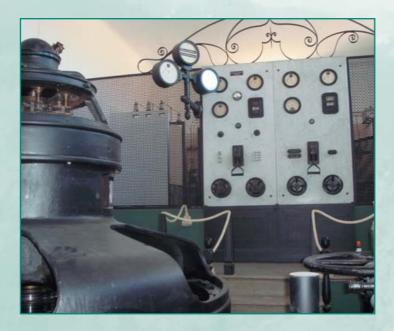
FASE EXPO (sin cogeneración)

- 1. Generación de calor con calderas de agua caliente: 15 MW.
- 2. Generación de frío mediante máquinas enfriadoras: 20 MW.
- 3. Acumulación de 11 m³ de agua fría para cubrir puntas de consumo: 12 MW.
- 4. Utilización del agua de río para refrigeración de máquinas: 5.000 m³/h.
- 5. Utilización de gas natural como energía primaria para generar calor: 1.950 Nm³/h.
- 6. Utilización de electricidad para generar frío (COP máquinas 5,6).
- 7. Planta ósmosis para llena de circuitos (5 m3/h).

FASE POST-EXPO (con cogeneración)

- 1. Generación de calor con calderas de agua caliente: 30 MW.
- 2. Generación de frío mediante máquinas enfriadoras: 20 MW.
- 3. Acumulación de 11 m³ de agua fría para cubrir puntas de consumo: 12 MW.
- 4. Utilización del agua de río para refrigeración de máquinas: 5.000 m³/h.
- 5. Utilización de gas natural como energía primaria para generar calor: 5.000 Nm³/h.
- 6. Utilización de electricidad para generar frío (COP máquinas 5,6).
- 7. Planta ósmosis para llena de circuitos (5 m³/h).
- 8. Cogeneración: producción eléctrica 6,4 MW; Producción de frío con máquinas de absorción de doble efecto de 3.600 kW; producción de frío mediante máquina de absorción de simple efecto 1.200 kW.


Instalaciones energéticas Expo 2008.


i

7.2.- Recuperación y puesta en marcha de una central minihidráulica en Calamocha

Gracias a su recuperación y rehabilitación, el siglo XXI ha visto de nuevo generar energía eléctrica a la antigua central minihidráulica que comenzó su actividad en el año 1930. Su origen hay que buscarlo todavía más lejanos, cuando a finales del siglo XIX se instaló a orillas del río Jiloca la antigua fábrica de papel, cambiando en el año 1930 la actividad a fábrica de mantas, instalando para su abastecimiento dos turbinas y dos alternadores de 90 KVA cada uno.

La recuperación ha consistido en la rehabilitación de todo el edificio, el canal de entrada, de 700 metros de longitud, a la minicentral, la recuperación y automatización de una turbina y alternador de 90 KVA, con su correspondiente conexión a la red

Descripción: Central minihidráulica

Propietario de la instalación: Saltos de Calamocha S.L. Ubicación: Paraje "El Rincón" en Calamocha, Teruel

Río Jiloca

Puesta en marcha: 2007

DATOS DE LA INSTALACIÓN

Caudal máximo: 3.000 l/seg

Salto: 5,62 m.

Tecnologías: Turbina Francis eje vertical y generador

asíncrono de 90 KVA

eléctrica. Quedando el otro grupo en reserva y sin conexión en red, para el propio suministro del edificio de la minicentral. La central produce energía en baja tensión, que posteriormente es transformada en alta para su vertido a la red eléctrica.

La puesta en marcha de la antigua, pero precisa, maquinaria ha supuesto un actuación artesanal y eficaz por parte de su propietario.

Un ejemplo de proyecto energético, de pequeñas dimensiones pero muy interesante, en el que concurre, junto a la aportación de una generación eléctrica sostenible, la recuperación de un patrimonio tecnológico y energético, con posibilidad de generar en la zona turismo relacionado con el patrimonio industrial en la Comunidad Autónoma de Aragón.

Boletín de Coyuntura Energética en Aragón

Primer semestre 2007 · Edición JUNIO 2008

N° 19

Departamento de Industria, Comercio y Turismo

EDITA

GOBIERNO DE ARAGÓN DEPARTAMENTO DE INDUSTRIA, COMERCIO Y TURISMO

DIRECCIÓN Y SUPERVISIÓN

DIRECCIÓN GENERAL DE ENERGÍA Y MINAS SERVICIO DE ENERGÍA

ELABORACIÓN TÉCNICA

SERVICIO DE ENERGÍA IDOM

ASESORES TÉCNICOS

SERGIO BRETO ASENSIO
JOSÉ IGNACIO HERNÁNDEZ MARTÍNEZ
ANA SÁNCHEZ DOMÍNGUEZ
JOSÉ ESTEBAN DEL BRÍO AVIÑO
ANTONIO PÉREZ MARTÍNEZ
MANUEL MODREGO PASCUAL
SUSANA JORDÁN PUÉRTOLAS

FOTOS PORTADA

INSTALACIÓN SOLAR DE ZUERA. BARCOS SOLARES EXPO 2008. INSTALACIÓN SOLAR FUENTES CLARAS. INSTALACIÓN SOLAR TÈRMICA Y APERTURA BIOCLIMÁTICA. ZARAGOZA.

DISEÑO GRÁFICO Y MAQUETACIÓN

INO REPRODUCCIONES

IMPRIME

INO REPRODUCCIONES DEPÓSITO LEGAL: Z-3735-99

AGRADECIMIENTOS

DIPUTACIÓN GENERAL DE ARAGÓN MINISTERIO DE INDUSTRIA, TURISMO Y COMERCIO RED ELÉCTRICA DE ESPAÑA, S.A. ENAGÁS, S.A. GRUPO ENDESA IBERDROLA, S.A.

GRUPO GAS NATURAL
ELECTRA DEL MAESTRAZGO, S.A.

REPSOL BUTANO, S.A. CEPSA ELF GAS, S.A. BP OIL ESPAÑA, S.A. SHELL ESPAÑA

PRIMAGAZ DISTRIBUCIÓN, S.A.

TOTALGAZ, S.A.

GRUPO VIESGO

COMISIÓN NACIONAL DE ENERGÍA

CLH AVIACIÓN, S.A. GRUPO MEROIL CASTELNOU ENERGÍA

